关闭 您好,检测到您使用的是Internet Explorer 6,建议升级浏览器以达视觉到最佳效果及最佳浏览速度。 Google ChormeFirefox Internet Explorer 8
澳门永利官网棋牌入口-永利皇宫棋牌2023最新版本

澳门永利官网棋牌.说说永磁同步电动机

发布时间:2024-04-13 15:16:33 来源:永利澳门官网入口 作者:永利皇宫棋牌2023最新版本

产品介绍

澳门永利官网棋牌

  1)直流电动机具有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所不具备的特性。

  优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。

  1)直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机常常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送入电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。

  2)复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大

  3)换向火花既会造成换向器的电腐蚀,还是一个无线电干扰源,会对周围的电器设备带来有害的影响。

  工程上广泛使用交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、成本低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。

  长期以来,在不要求调速或者调速要求不高的场合,异步电动机占有主导地位。当然这类拖动中,无形中损失了大量电能。

  过去的电力拖动中,很少使用同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,平均转矩为零。

  变频电源可解决同步电动机的起动和调速问题,但在70年代以前,变频电源是可想而不可得的设备。所以,过去的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶尔也有同步电动机运行的例子,但它的主要作用是用来改善大企业的电网功率因数。

  材料技术的飞速发展、特种拖动控制的需要,成就了永磁同步电动机。永磁同步电动机是一种同步电动机,它的转子使用的是永磁体,可以产生转子磁场;外接电源的定子绕组,形成定子磁场,产生电磁转矩来驱动永磁转子。定子和转子的磁场是同步的。

  铝镍钴是上世纪三十年代研制成功的永磁材料,虽具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用贵重的金属钴,成本高,这些不足大大限制了它在电机中的应用。

  铁氧体磁体是上世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。

  钐钴稀土永磁材料在上世纪六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使用。它们不足是温度系数大,居里点低,容易氧化生锈而需涂复处理。经过不断改进提高,这些缺点大多已经克服,现在钕铁硼永磁材料最高的工作温度已可达200℃,一般也可达150℃,已足以满足绝大多数电机的使用要求。

  永磁材料的发展极大地推动了永磁同步电动机的开发应用。在同步电动机中用永磁体取代传统的电激磁磁极的好处是:

  用永磁体替代电激磁磁极,简化了结构,消除了转子的滑环、电刷,实现了无刷结构,缩小了转子体积;

  电力电子技术是息产业和传统产业间重要的接口,是弱电与被控强电之间的桥梁。自58年世界上第一个功率半导体开关晶闸管发明以来,电力电子元件已经历了第一代半控式晶闸管,第二代有自关断能力的半导体器件(大功率晶体管GTR、可关断晶闸管GTO、功率场效应管MOSFET)的三代复合场控器件(绝缘栅功率晶体管IGBT、静电感应式晶体管SIT、MOS控制的晶体管MCT等)直至90年代出现的功率集成电路IPM。半导体开关器件性能不断提高,容量迅速增大,成本大降低,控制电路日趋完美,它极大地推动了各类电机的控制。

  70年代出现了通用变频器的系列产品,可将工频电源转变为频率连续可调的变频电源,这就为交流电机的变频调速创造了条件。这些变频器在频率设定后都有软起动功能,频率会以一定速率从零上升设定的频率,而且此上升速率可以在很大的范围任意调整,这对同步电动机而言就是解决了起动问题。对最新的自同步永磁同步电动机,高性能电力半导体开关组成的逆变电路是其控制系统的必不可少的功率环节。

  集成电路和计算机技术是电子技术发展的代表,它不仅是高新电子信息产业的核心,又是不少传统产业的改造基础。它们的飞速发展促进了电机控制技术的发展与创新。

  70年代人们对交流电机提出了矢量控制的概念。这种理论的主要思想是将交流电机电枢绕组的三相电流通过坐标变换分解成励磁电流分量和转矩电流分量,从而将交流电动机模拟成直流电动机来控制,可获得与直流电动机一样良好的动态调速特性。这种控制方法已经成熟,并已成功地在交流伺服系统中得到应用。因为这种方法采用了坐标变换,所以对地运算速度、数据处理能力,控制地实时性和控制精度等提出了很高的要求,单片机往往都不能满足要求。近年来各种集成化的数字信号处理器(DSP)发展很快,性能不断改善,软件和开发工具越来越多,出现了专门用于电机控制的高性能、低价位的DSP。集成电路和计算技术的发展对永磁同步电动机控制技术起到了重要的推动作用。

  在电动机静止时,给三相定子绕组通入对称电流,从而产生定子旋转磁场;定子旋转磁场相对于转子旋转,在笼型绕组内产生感应电流(转子电流),进一步形成转子旋转磁场;定子旋转磁场和转子旋转磁场相互作用产生的异步转矩使转子由静止开始加速起动。

  随着转子逐渐加速,到速度接近同步转速的时候,转子永磁磁场与定子旋转磁场的转速接近相等,定子旋转磁场速度稍大于转子永磁磁场旋转速度,它们相互作用产生转矩将转子牵入到同步运行状态。

  3)同步运行:在同步运行状态下,转子鼠笼绕组的旋转速度与定子的旋转速度是相等的,不再产生感应电流。此时转子上只有永磁体产生磁场,它与定子旋转磁场相互作用,产生驱动转矩。

  总的来说,永磁同步电动机靠转子绕组的异步转矩实现起动;起动完成后,转子绕组不再起作用,由永磁体和定子绕组产生的磁场相互作用产生驱动转矩。

  1)转速为同步转速。转速与电机频率能够保持恒定,可简化控制系统;调速范围宽,高转速设计可达10000r/min。

  启动转矩更大,噪音更小,温度升高更低。因为一般采用异步起动方式,电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求。

  体积小,重量轻,有利于轻量化,减少电动能耗。由于采用高性能永磁材料,永磁电机的气隙磁场较感应电机大幅增强,电机的体积和重最较感应电机可以大大的缩小。

  3)效率高、功率因数高:正常运转时,励磁磁场由永磁体提供,转子不需要励磁电流,转子无绕组铜耗;永磁同步电机不仅仅在额定功率点的效率高,而且在整个调速范围内的平均效率也高。永磁同步电机的电机效率提高,与异步电机相比,任意转速点均节约电能,尤其在转速较低的时候这种优势尤其明显。

  高功率因数,通过合理的设计,能达到极限值1.0,可使定子电流较小,定子绕组铜耗也小。可以更加省电。

  1)用独立的变频电源向永磁同步电动机供电,同步电动机转速严格地跟随电源频率而变化,此即为外同步式永磁同步电动机运行。外同步运行常用于开环控制,由于转速与频率的严格关系,此运行方式适合在多台电动机要求严格同步运行的场合使用。例如,纺织行业纱锭驱动,传送带锟道驱动等场合。为此可选用一台较大容量的变频器,同时向多台永磁同步电动机供电。 当然,变频器必须能软起动,输出频率能由低到高逐步上升到以解决同步电动机的起动问题。

  2)所谓自同步的永磁同步电动机,其定子绕组产生的旋转磁场位置由永磁转子的位置所决定,能自动地维持与转子磁场有900的空间夹角,以产生最大的电机转矩。旋转磁场的转速则严格地由永磁转子的转速所决定。用此种方式运行的永磁同步电动机除仍需逆变器开关电路外,还需要一个能检测转子位置的传感器,逆变器的开关工作,即永磁同步电动机定子绕组得到的多相电流,完全由转子位置检测装置给出的信号来控制。这种定子旋转磁场由定子位置来决定的运行方式即自同步的永磁同步电动机运行方式,这是从60年代后期发展起来的新方式。

  自同步的永磁同步电动机运行方式从原理上分析可知,它具有直流电动机的特性,有稳定的起动转矩,可以自行起动,并可类似于直流电动机对电机进行闭环控制。自同步的永磁同步电动机已成为当今永磁同步电动机应用的主要方式。

  自同步永磁同步电动机按电机定子绕组中加入的电流形式可分为方波电动机和正弦波电动机二类。方波电动机绕组中的电流式方波形电流,分析其工作原理可知,它与有刷直流电动机工作原理完全相同。不同处在于它用电子开关电路和转子位置传感器取代了有刷直流电动机的换向器和电刷,从而实现了直流电动机的无刷化,同时保持了直流电动机的良好控制特性,故该类方波电动机人们习惯称为无刷直流电动机。这是当前使用最广泛的,很有前途的一种自同步永磁同步电动机。

  正弦波自同步永磁同步电动机其定子绕组得到的是对称三相交流电,但三相交流电的频率、相位和幅值由转子的位置信号所决定。转子位置检测通常使用光电编码器,可精确地获得瞬间转子位置信息。其控制通常采用单片机或数字信号处理器(DSP)作为的核心单元。因其控制性能、控制精度和转矩的平稳性较无刷直流电动机控制系统为好,故主要用于现代高精度的交流伺服控制系统中。

  现代工农业中的驱动电机常用的有交流异步电动机、有刷直流电动机和永磁同步电动机(包括无刷直流电动机)三大类,它们的综合特性比较见下表。

  像家用空调压缩机原先都是采用单相异步电动机,开关式控制其运行,噪声和较高的温度变化幅度是它的不足。90年代初,日本东芝公司首先在压缩机控制上采用了异步电动机的变频调速,变频调速的优点促进了变频空调的发展。后来许多公司开始采用永磁无刷电动机来替代异步电动机的变频调速,显著提高了效率,获得更好的节能效果和进一步降低了噪声,在相同的额定功率和额定转速下,设单相异步电动要的体积和重量为100%,则永磁无刷直流电动机的体积为38.6%,重量为34.8%,用铜量为20.9%,用铁量为36.5%,效率提高10%以上,而且调速方便,价格和异步电动机变频调速相当。永磁无刷直流电动机在空调中的应用促进了空调剂的升级换代。

  再如仪器仪表等设备上大量使用的冷却风扇,以往都采用单相异步电动机外转子结构的驱动方式,它的体积和重量大,效率低。近年来,它已经完全被永磁无刷直流电动机驱动的无刷风机所取代。现代迅速发展的各种计算机等信息设备上更是无例外地使用着无刷风机。这些年,使用无刷风机已形成了完整的系列,品种规格多,外框尺寸从15mm到120mm共有12种,框架厚度有6mm到18mm共7种,电压规格有直流1.5V、3V、5V、12V、24V、48V,转速范围从2100rpm到14000rpm,分为低转速、中转速、高转速和超高转速4种,寿命30000小时以上,电机是外转子的永磁无刷直流电动机。

  近年来的实践表明,在功率不大于10kW而连续运行的场合,为减小体积、节省材料、提高效率和降低能耗等因素,越来越多的异步电动机驱动正被永磁无刷直流电动机逐步替代。而在功率较大的场合,由于一次成本和投资较大,除了永磁材料外,还要功率较大的驱动器,故还较少有应用。

  有相当多的工作机械,其运行速度需要任意设定和调节,但刚开始的时候速度控制精度要求并不非常高。在这类调速应用领。