关闭 您好,检测到您使用的是Internet Explorer 6,建议升级浏览器以达视觉到最佳效果及最佳浏览速度。 Google ChormeFirefox Internet Explorer 8
澳门永利官网棋牌入口-永利皇宫棋牌2023最新版本

公司新闻    公司新闻

澳门永利官网棋牌.电机行业专题:机器人“动力源”看好国产电机持续突破

发布时间:2024-05-17 06:28:18 来源:永利澳门官网入口 作者:永利皇宫棋牌2023最新版本

澳门永利官网棋牌

  电机是一种将电能转换为机械能的装置。大多数电机通过电流在导线绕组中与磁场的相互作 用来产生扭矩,作用在电机轴上形成力。电机主要由定子和转子组成,定子上的绕组通电产生 磁场,而转子则通过与磁场相互作用而转动。 主要组成部分可以分为: 1) 外壳:外壳由一个框架(或轴心)和两个端盖(或轴承座)组成。电机的外壳不仅可以将 电机的组件保持在一起,还可以保护内部组件免受湿气和污染物的影响。此外,外壳类型 还会影响电机的冷却,外壳可以分为开放式外壳,完全封闭式外壳。 2) 定子:定子承载磁场绕组和极。定子与转子一起构成机器的磁路或核心。 3) 转子:承载电枢绕组。电枢是承载负载的部分。 4) 绕组:通电后,会产生电磁力。

  电机种类多,可以按照不同方式进行分类:1)从运行方式来分,有旋转电动机(含连续旋转、 断续旋转和步进旋转三大类)、直线电动机、平面电动机等;2)从所用电源来分,有交流电动 机(含单相和三相、同步和异步、工频和中频等多种分类)和直流电动机两大类;3)还可从 电压高低、结构形式、体积或功率大小、用途、适用环境等多方面进行分类。

  从应用场景来看,电机应用场景众多,在消费市场、工业、车载等都有应用。本文以机器人为 切入点,重点关注在工控、工业机器人领域、人形机器人等领域应用的控制电机。

  电机的上游主要是磁性材料、编码器、芯片和轴承等其他零部件,中游是电机制造,下游是工 控、工业机器人等行业应用。

  磁性材料是电机主要原料之一,对电机性能影响较大。电机一般使用磁性较强的材料,强磁 性材料包括了永磁材料、软磁材料以及功能性磁性材料。永磁的特性在于一经磁化,很难退磁, 而软磁也容易磁化,但是磁化后容易退磁:永磁材料目前的划分有三大类,金属永磁、铁氧体 永磁和稀土永磁,而软磁材料则有铁氧体软磁、金属粉芯、金属软磁和非晶纳米晶等。两种磁 材料的最不同的特征在于矫顽力不同。矫顽力的定义为使已磁化的磁材无法向外磁路提供能量 (但磁体内部仍具有一定能量)而必须施加的、与原磁化方向相反的外磁场强度,单位为 Oe 或 A/m。简单一点理解就是矫顽力越高,材料越不容易退磁: 1) 永磁材料的目标是不断追求更高的矫顽力,强化不退磁能力,在永磁电机中应用较多; 2) 软磁通过降低矫顽力,追求更高的磁导率,可以起到电能参数变换,提高磁性元件效率并 节省空间的作用,目前作为各类电机、变压器、继电器、电感器、滤波器等元器件的磁芯应用在新能源汽车、机器人、光伏等诸多领域。

  钕铁硼性能较好,渗透率有望提升。钕铁硼材料在矫顽力上的表现较优异,同时在磁能积上 也优于其他材料。磁能积较好也意味着单位磁场强度下钕铁硼体积更小,这也非常有利于节省 电机空间。尤其是高性能钕铁硼磁材料(矫顽力与磁能积之和大于 60),能大大减小电机体积, 减轻电机质量,缩小电机能量损耗并提高整个电机系统效率。唯一的劣势在于温度稳定性比较 差,需要通过添加钴等其他元素来改善温度性能,价格相对较高。

  编码器的分辨率和精度与电机运动控制性能有着密切的联系。编码器是将信号进行编制、转 换为可用以通讯、传输的信号形式的设备,如为伺服电机的闭环控制产生速度或位置的实际测 量值。编码器种类繁多,按照读出方式可分为接触式和非接触式两种;按照检测工作原理,伺 服电机编码器可主要分为光电编码器、磁性编码器、电感式编码器和电容式编码器。其中,基 于光电转换原理的光编码器和基于磁敏感元件感应磁场变化原理的磁编码器的应用较为广泛。 1) 光电编码器由 LED 光源(通常是红外光源)和光电探测器组成,二者分别位于编码器码盘 两侧。码盘由塑料或玻璃制成,上面间隔排列着一系列透光和不透光的线或槽。码盘旋转 时,LED光路被码盘上间隔排列的线或槽阻断,从而产生两路典型的方波A和B正交脉冲, 可用于确定轴的旋转和速度。 2) 磁电式编码器的原理是采用磁阻或者霍尔元件对变化的磁性材料的角度或者位移值进行测 量。磁性材料角度或者位移的变化会引起一定电阻或者电压的变化,通过放大电路对变化 量进行放大,通过单片机处理后输出脉冲信号或者模拟量信号,达到测量的目的。磁性转 盘的磁极数、磁阻传感器的数量及信号处理的方式决定了磁性编码器的分辨率,使磁场信 号不会受到灰尘、湿气、高温及振动的影响。

  光编码器一般精度较高,成本较高,对工业环境有一定要求,粉尘、水汽等可能会影响编码器 精度;磁编码器成本较为简单,价格优势相对明显。

  编码器国产化进行时,看好国内企业突破高端编码器。当前,编码器中的一些芯片、码盘及 磁头等重要元器件仍然依赖于进口,这是国内编码器厂商下阶段的主要突破目标。以码盘为例, 码盘的码道数越多,其最外道被分割的区域就越多,即编码器的最小分辨率越高。码盘的生产 要求每个码道刻划精准,并且要求彼此对准,给编码器的国产化进程造成了极大阻碍。除码盘 之外,光电编码器的芯片属于光敏器件,光电结合紧密且工艺特殊,对参数控制要求较高,需 要在高温条件下持续工作,还要保证信号形态正常,且电流输出能力较大,有特殊的封装工艺 要求,是国产化的壁垒。

  电机是机器人的关键组成部件之一,电机的扭矩、功率密度和转速等指标决定了机器人的性 能。机器人相关的电机可以分为伺服电机、直流电机、交流电机和步进电机,参考 Skyquest 数据,目前直流电机占比较高,而伺服电机增长较快,主要应用在工业机器人、CNC 系统对精 度要求较高的场合。

  我们认为机器人需要根据不同场景去使用对应的电机,工业机器人、服务机器人、协作机器人 等机器人根据应用场景不同,会选择不同电机。本文主要以工业机器人、协作机器人和人形机 器人为例,分析对应电机情况。

  工业机器人指面向工业领域的多关节机械手或多自由度机器人,在工业生产加工过程中通过自 动控制来代替人类执行某些单调、频繁和重复的长时间作业,主要包括焊接机器人、搬运机器 人、码垛机器人、包装机器人、喷涂机器人、切割机器人和净室机器人。工业机器人在机械结 构上有类似人类的行走、扭腰、大臂、小臂、手腕、爪子等部件,由计算机控制。工业机器人 广泛应用于电子、物流、化工等工业领域。按照机械机构分类,工业机器人可以分为线性机器 人(又叫直角坐标机器人)、多自由度机器人(又叫多关节机器人)、并联机器人(又叫 deltaΔ 机器人)和水平多关节机器人(又叫 scara 机器人)等。

  工业机器人对精度要求较高,一般使用伺服电机,伺服系统成本在机器人中的占比为 25%。伺 服系统作为工业机器人核心零部件,可以将控制层指令准确、及时、稳妥地传送到执行层。

  协作机器人追求轻量化、人机相互。协作机器人是在 SCARA 机器人以及垂直多关节机器人等机 械结构基础上衍生出的新类型。协作机器人除在外观形态上与传统工业机器人有些差别外,在 产品特性上也区别于传统工业机器人追求的“刚度”,协作机器人更多追求轻量化、柔性和安 全协作性。此外在结构特点、交互方式、部署成本以及应用场景等方面与传统工业机器人也存 在一定的差距。

  协作机器人具有紧凑小型化、轻量化特性,因此选择更加紧凑、高效率的电机方案。协作机 器人与传统工业机器人在构造上有一定差异,协作机器人通常采用整体式的无框电机,采用关 节一体化技术。无框电机只由定子和转子两个部分组成,相较于传统电机,去除了轴、轴承和 外壳,使其体积更小、结构更紧凑,易于维护,并便于被高度集成到协作机器人本体的中空结 构内,从而提高其机械性能。除了伺服电机外,协作机器人通常还使用体积小、重量轻的谐波 减速机。我们认为随着未来机器人小型化的发展,协作机器人关节中狭窄的安装空间和末端力 矩的要求显著增高,对无框电机本身性能的挑战也不断提升。

  人形机器人运动离不开驱动器,目前驱动器方案可以分为刚性驱动、弹性驱动和准直驱。双 足人形机器人关节运动特点和人类关节运动类似,运动速度较快、机动性较好,因此相比其他 驱动器,人形机器人驱动器需要具有高功率密度、高响应性、高能量利用效率和耐冲击性等特 性。参考丁宏钰等的《国内外双足人形机器人驱动器研究综述》,目前人形机器人电动驱动器 方案可以分为三类:

  1) 刚性驱动:1983 年,早稻田大学研究的 WL-10R 机器人使用刚性驱动器 TSA。自此双足 人形机器人开始广泛应用刚性驱动器为关节动力源。刚性驱动器主要由电机、高传动比减 速器、编码器、力矩传感器和控制板等组成(力矩传感器是可选择项)。相比其他方案, 刚性驱动较为成熟,但能量效率相对较低一些。

  2) 弹性驱动:1995 年,麻省理工学院的 Pratt 等提出了弹性驱动器 SEA( series elastic actuator) 的概念。美国宇航局的机器人 Valkyrie 和意大利技术研究院的机器人 WalkMan 都使用了弹性驱动器。弹性驱动器通过增加弹性单元来模拟肌肉系统功能,可以缓冲 外部冲击和储能,使关节表现出柔顺、安全和高能量效率特性。但由于弹性元件引入,系 统变为欠驱动系统,因此运动控制精度较低。

  3) 准直驱驱动:2016 提出了准直驱方案,准直驱驱动器含义是依靠驱动器电机开环力控,不 依赖于附加力或力矩传感器,就可以本体感知机器人脚部和外界的交互力,也被称为本体 驱动器。一般方案是采用电机加低传动比减速器的方案,同时要求负载质量和转动惯量尽 可能地小,这样可以实现高带宽力控和良好的抗冲击能力。准直驱驱动器主要由高扭矩密 度电机、低传动比减速器、编码器和控制板等组成。相比其他方案,运动控制系统较为复 杂。

  我们认为特斯拉人形机器人在方案方面偏好刚性驱动方案,其一体化关节(旋转关节)类似 协作机器人设计,无框力矩电机是核心,利用高转速电机+高减速比减速器实现快速响应。以 协作机器人为例,一体化机器人关节主要由扭矩传感器、谐波减速机、力矩电机、制动器、增 量编码器、绝对值编码器和伺服驱动器组成。根据金力等《驱控一体化机器人关节的研制及应 用》,一体化机器人关节采用无框力矩电机,电机定子与关节壳体之间一般通过耐高温树脂胶 粘接或过盈配合连接。电机转子与电机轴之间一般通过树脂胶粘接。无框力矩电机的大直径长度比和多磁极对保证了电机的大扭矩输出性能和低转速特性,其转子中空结构,方便关节的内 部走线。

  人形机器人需要完成复杂的工作,对手部“灵巧性”提出需求。根据来淼等的《腱驱动仿人 型五指灵巧手的设计》,目前灵巧手的传动方式有很多,常见的有齿轮传动、连杆传动和腱传 动等多种方案。腱传动使用钢丝绳模仿人手的肌腱部位,将驱动器外置于手掌或者手臂处,用 腱绳实现远距离传动,精简了手指处的结构设计,相对齿轮和连杆,钢丝绳的重量和摩擦更小, 我们推测特斯拉人形机器人采用的是经典的六电机+金属腱绳方案。

  人形机器人采用集成化方案,对轻量化、紧凑结构追求较高,手部采用轻量高效的空心杯电 机,身体部位采用无框电机等构成的一体化关节。特斯拉 Optimus 共有 28 个运动关节,包括 三种旋转执行器和三种线性执行器:其中旋转关节采用电机+传感器+谐波减速器的方案;而线 性关节采用电机+丝杠+传感器(从形态上,我们推测是无框电机);特斯拉机器人灵巧手采取 了折中的方案,使用较为经典的六电机驱动方式,拇指采用双电机驱动弯曲和侧摆,四指 各用一个电机带动,电机采用蜗杆传动机构。从数量来看,共 12 个驱动,手指部分我们推测 是空心杯电机+驱动装置+传动装置构成。

  机器人电机市场占电机市场约 1%,增速相对较快。Skyquest 预计 2021 年全球机器人相关电机 规模为 11 亿美元,2030 年有望达到 28 亿美。

上一篇:资讯】秦皇岛国产电机、国产泵等2023-2025年

下一篇:2023电机行业国产替代机遇产业链及相关公司分析报